1. Notation

失拟检验。Like the ANOVA test, this test is an F-test based on decomposing sums of squares. This test requires repeat observations (一个x处要有多个样本点)。

Untitled

2. Decomposition

核心逻辑:①prediction error = ②the lack of fit of the model + ③random error

SSE: prediction error

$$ \sum_{i}\sum_{j}(y_{ij}-\hat{y}_{ij})^2 $$

SSLF: error due to the lack of fit of the model: how far the average observed response at each x-value is from the predicted response of each data point.

$$ \sum_{i}\sum_{j}(\bar{y}{i}-\hat{y}{ij})^2 $$

SSPE: error due to the pure randomness from the data.

$$ \sum_{i}\sum_{j}(y_{ij}-\bar{y}_{i})^2 $$

综上,我们有:

$$ \underbrace{\sum\limits_{i=1}^c \sum\limits_{j=1}^{n_i} \left(y_{ij} - \hat{y}{ij}\right)^{2}}{\underset{\text{Error Sum of Squares}}{\text{SSE}}} = \underbrace{\sum\limits_{i=1}^c \sum\limits_{j=1}^{n_i} \left(\overline{y}{i} - \hat{y}{ij}\right)^{2}}{\underset{\text{Lack of Fit Sums of Squares}}{\text{SSLF}}} + \underbrace{\sum\limits{i=1}^c \sum\limits_{j=1}^{n_i} \left(y_{ij} - \overline{y}{i}\right)^{2}}{\underset{\text{Pure Error Sum of Squares}}{\text{SSPE}}} $$

其中c denotes the number of distinct x values you have.

【自由度】SSE为n-2,SSLF为c-2,SSPE为n-c → MSE、MSLF、MSPE。

3. F-test